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S U M M A R Y  
This paper investigates the steady flow of a thin sheet of viscous liquid down a variable incline ; the Reynolds number 
Re and the Froude number Fr are both large, with Fr/Re = 0(1). The governing equations are of the boundary layer 
type, and the Karman-Polhausen method is utilised to describe possible motions. It is found, when the incline becomes 
increasingly horizontal, that there can exist a point of separation on the bed of the stream; this is accompanied by a 
rapid rise in the depth of the liquid. The physical explanation is equivalent to that of classical boundary layer theory, 
except that the role of the pressure gradient in the external flow as the driving force is replaced by that of the force 
due to gravity. 

1. Introduction 

The flow of a liquid down an open channel is one of the basic problems in the theory of 
mathematical hydraulics. It has been difficult to take into account the effects of viscosity 
directly because of the mathematical complications. However, much success has been gained 
by replacing the viscous forces in the Navie~Stokes equations with a frictional resistance term 
derived from an empirical formula due to Manning; see, for example, Stoker [1]. A theory 
that avoids the necessity of using the Manning formula has recently been presented for flows 
with a small Reynolds number by Mei [2], and extended by Smith [3]. The behaviour could 
be classed as a Stokes flow. In the present paper we consider motions with a high Reynolds 
number that are essentially of the boundary layer type; specifically, we investigate the steady 
flow of a thin sheet of liquid down a variable incline. 

We require that the flow within the thin sheet of liquid represents a balance between the 
viscous, inertial and gravitational forces. Consequently, section 2, the Reynolds number Re 
and the Froude number Fr are large such that Fr/Re =0(1); Re is effectively defined as the ratio 
of the volumetric flux to the kinematic viscosity. The theory developed is very similar, in fact, 
to the classical boundary layer theory, and the governing equations are equivalent to the bound- 
ary layer equations with the one alteration that the driving mechanism is provided by gravity 
rather than a pressure gradient in the external flow. As a result, many of the ideas from bound- 
ary layer theory can be utilised in this work. 

For one particular bed profile, similarity variables can be defined and an exact solution of 
the governing equations is calculated ; this is presented in section 3. Otherwise, it is necessary 
to use approximate methods, and the most fruitful is through an adaptation of the Karman 
Polhausen technique that utilises the momentum integral (cf. Rosenhead [4]); this is developed 
in section 4. A pair of coupled first order ordinary differential equations are found for the profile 
of the free surface and the velocity on that free surface in terms of the slope of the bed. Numerical 
solutions are calculated that give the profile of the free surface in particular cases. However, 
in certain cases when the bed becomes almost horizontal, the numerical procedure breaks 
down, and all evidence points to the presence of a point of separation. Physically, the gravita- 
tional force becomes too weak to be capable of maintaining the flow, and the drag on the bed 
of the stream tends to zero. Beyond the point of separation there is a rapid increase in the depth 
of the liquid. With regard to the location of the separation point, the Karman-Polhausen profile 
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is known to correctly predict its existence, although somewhat underestimating the exact 
location. Because one of the main purposes of this paper is just to display the phenomenon, it 
has not been felt necessary to adapt some of the more refined techniques of boundary layer 
theory to determine the exact position. 

It must be emphasized that there is a distinct difference between this separation and the 
hydraulic jump phenomenon. Watson [5] gives a clear description of the creation of the latter 
downstream from a sluice gate when the flow is along a horizontal plane. His results are seen 
(section 2) to be immediately applicable when the flow from the gate is down an incline of 
variable slope. It is necessary that the Froude number is large such that Fr/Re >> 1 in the motion 
prior to the jump; beyond the jump there is a reduction in the order of magnitude of Fr. 
Also, to the first order, the distance from the sluice gate to the jump is independent of the angle 
the slope makes with the horizontal. It is when the flow is down an incline with increasingly 
small slope, and with Fr/Re= 0(1), that the point of separation has been noted. 

Flow with F r =  0(1) and Re >> 1 exist only when the slope of the channel is zero. It is in this 
domain, in fact, that we can consider the effect of viscosity on the classical "long wave in shallow 
water" theory, where the liquid is assumed to be inviscid. The recent paper by Wen [8] begins 
this particular investigation. The present work, therefore, considers the flow regime where the 
Froude number lies between the value taken by Watson and that taken by Wen. Ackerberg 
[9] develops an analysis with Fr/Re = 0(1) as he considers the formation of the boundary layer 
along a vertical plate when the initial flow is in free fall. (It must be noted that Ackerberg 
defines his Froude number from the initial data, and that one of his conclusions is that the 
Froude number is rapidly increased by an order of magnitude to that defined here as the flow 
"forgets" the manner in which it started.) Consequently, the investigation of this paper can be 
seen as a natural continuation of the work of Ackerberg, where the boundary layer is fully 
developed and the slope of the bed begins to vary from that of a uniform slope. 

Now, the present investigation was prompted by observations made by the author of certain 
flows in a stream, as well as by a desire to further understand the effect of gravitational forces on 
a boundary layer in extending the work of Ackerberg. However, it is still necessary to consider 
the physical existence of the phenomenon of separation; the other features described (e.g. 
when the incline becomes steeper so the depth of the liquid decreases) do not raise this question. 
To this end we observe that the angle at which separation is given by the numerical integration 
is small in all cases; to be precise, the angle is never found to be greater than 0.06 radians 
(about 3~ The angle is of this order even when the data is extreme in the sense that it strains 
the assumption that the rate of change of the slope must be of finite order (or less). This fact in 
itself implies that the effect cannot be a common occurrence, for the flow will naturally break 
down when the slope becomes level. 

Another point to consider concerns the stability of flows down an inclined plane ; as with 
all boundary layer studies there is the uncertainty as to the possible break down of laminar 
flow. The calculations and experiments of Benjamin [6] and Binnie[7] do show that instabilities 
can develop for comparatively small Reynolds numbers, even though they are not always easy 
to observe. Therefore caution is required in assuming the physical existence of separation with 
a laminar flow; separation can take place with a turbulent boundary layer, though it is delayed 
considerably by turbulence. 

The strongest assertions that can be made are when the analogy with the established results 
of boundary layer theory is noted. The governing differential equation represents exactly 
the same balance of forces except that the driving force of a pressure gradient is replaced by 
that due to gravity. It is, therefore, most reasonable to anticipate that a reduction in the 
gravitational force can be the direct cause of separation, in the same way that the reduction 
in the pressure gradient is known to give rise to separation in the flow past bluff bodies (e.g. 
the point of separation for the uniform flow past a circular cylinder is approximately 81 ~ from 
the forward stagnation point, Rosenhead [4, p. 264, 285]). In conclusion, although the analogy 
with classical boundary layer gives strong evidence for the existence of the separation pheno- 
menon, careful experiments are required for a more definitive answer to this question. 
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2. Formulation 

The purpose of the following investigation is to consider the steady flow under gravity of a thin 
�9 sheet of viscous liquid down a slope with varying incline at high Reynolds numbers ; the terms 
thin and large are now given a precise formulation. Let 2 measure the distance along the bed of 
the incline from a fixed origin O, and ~ the perpendicular distance from the bed of a field point 
P(2, ~); the free surface profile is y = f/(2). The bed makes the variable angle 0(~) with the 
horizontal. At P the velocity of the liquid in the 2, ~ directions is u, v respectively, and the 
pressure is p. 

We now introduce the non-dimensional variables x, y, t/, u, v, p by 2 =  lx, y =  dy, f l=dn ,  
~ =  Uu, f~= Vv,  p = p U Z p  where p is the density of the liquid. The constants l, d are the length 
scales, and U, V the velocity scales in directions parallel and perpendicular to the bed profile 
respectively. When we write d/l  = e, and set e ~ 1, the investigation is restricted to flows within 
a thin sheet of the liquid. [When I is taken to represent distances within which the slope 0 has 
variations of finite order, it is also necessary that the magnitude of dO/dx is no greater than 
0(1).] However, it is now necessary to put V / U  = e, for only in this manner can the terms in the 
continuity equation, that ensures the conservation of mass, have the same magnitude. Alterna- 
tively, the defining relation for V can be seen to be V = Ud/1. In the non-dimensional variables, 
the Navier-Stokes equations now become 

ux+ vy = 0 ,  (1) 

uu x + vuy = - Px + (eFr) -  a sin 0 + e R e  -1  Ux x + (eRe) -1  Uyy , (2) 

e 2 (uv~ + vv,) = -- py- -  Fr  1 cos 0 + e 3 R e - 1  v ~  + e R e - 1  vyy,  (3) 

where R e  = Ud/v  is the Reynolds number, Fr  = u z / g d  is the Froude number;  9 is the acceleration 
due to gravity and v the (constant) coefficient of viscosity. The boundary conditions, which 
require zero velocity on the bed, and zero stress together with no normal flux on the free sur- 
face, are stated later after the basic approximations have been completed. We do note now that 
the effect of surface tension is not included. 

There is an exact solution to the equations (1) (3) when the bed has constant slope c~; this 
is given by 

u = R e  F r  1 sin ~ ( h y -  ly2), V = 0, p = F r - 1  COS 0~(h -  y),  (4) 

where h is the constant (non-dimensional) depth. 
When there is a balance between the viscous, inertial and gravitational forces in a flow at 

large Reynolds numbers, it is clear from (2), (3) that we set Fr  = e 1, R e  = e- 1. Consequently, 
the pressure is 0(E) and can be neglected, so there remain the equations 

u~+ vy=0 (5) 
uu x + vuy = S (x) + uy , ,  (6) 

where S(x)= sin 0. The system (5), (6) is equivalent to the boundary layer equations with the 
effect of a pressure gradient in the external field replaced by that of a gravitational force due to 
the slope of the bed. These equations will be considered in greater detail in the later sections 
within the context of boundary layer theory, though we note in passing that they are similar 
to the pair investigated by Ackerberg [8] in the particular case S(x)= 1. 

When the Froude number satisfies Fr  >> e -  1 the gravitational forces can be neglected, so that 
the flow represents a balance between the viscous and inertial forces only; the resultant equa- 
tions are the same as (5), (6) except that the term S(x )  is absent. These are just the equations 
solved by Watson [5] in the particular case S(x)=_ O, and so his results are immediately appli- 
cable. Therefore, there will be a linear increase in the surface elevation from just beyond the 
commencement of the flow (at a sluice gate for example) until the occurrence of a hydraulic 
jump. To the first order the distance between these positions is independent of the slope of the 
incline, because of the negligible influence of the gravitational forces. Beyond the jump, the 
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effect of gravity becomes equal in magnitude to the viscous and inertial forces, and further 
considerations are based on equations (5), (6). There is, therefore, a change in the order of 
magnitude of the Froude number across the jump. It can be deduced from the calculations of 
Watson that Fro/Frl = (dl/do) 3 when the zero and unity subscripts represent values before the 
beyond the jump respectively. (The length scale I is taken to be the distance from the commen- 
cement of the flow to the hydraulic jump). The conservation of mass is the basic law assumed for 
this result. 

If the pressure is to have a non-negligible effect on the flow, it is clear from both (3) and (4) 
that Fr= 0(1). The pressure is then hydrostatic and given by p = cos 0 ( t / -y) .  

However, the gravitational term (e Fr) 1 sin 0 in (2) then dominates all other terms unless 
0 (x)_= 0; this is the situation discussed by Wen [9]. For  variable 0, there is no steady flow within 
which the pressure plays a dominant role. 

3. An Exact Solution 

In the rest of this paper, the equations (5), (6) are considered. The necessary boundary conditions 
are derived from taking the approximation Fr--Re  = e-1, e ~ 1 in the most general form as 
given by Wehausen and Laitone [10], for example. The conditions are seen to be 

u = v = 0  on y = 0 ,  (7) 

u , = O  and u~/X=v on y = q ( x ) ,  (8) 

together with 

f " constant = 1 (9) udy I 

0 

Assume that there exists a similarity solution of the form 

u(x, y) = U(x) f ( ( ) ,  ~ = y/rl(x ) (10) 

where U is the velocity on the free surface. Mass conservation, (9), implies that 

Ut /=  constant .  ~ (11) 

The equation of continuity, (5), then indicates v = Utl'r and substitution into the momentum 
equation (6) further requires 

St/3 = constant and U't/2 = constant .  (12, 13) 

The analysis is similar to that of Watson [5], and is not reproduced here. It is necessary that, 
given S, there exist functions U and 1/that satisfy (11)-(13); the only such representations are 
seen to be 

S(x)=#(X+Xo) 3, tl(x )=~o(x+xo) ,  U(x)=2(X+Xo) -a (14) 

for positive constants #, o), 2 and all values of x o. The function f(~) satisfies the non-linear 
ordinary differential equation f "  + ~(D 2/~- 1 + 2e)Zf2 = 0, which has the solution 

i .r < =  
. 0 

where 

f i a = { (1-u) (k+u+uZ)}-~du  and a(2c~) - 1 =  u{(1-u)(k+u+u2)}--~du 
0 0 

to satisfy the boundary conditions ; k = 1 + 3/~2- 2. When S(x) is given, both # and x o are known. 
There is only one relation for the two remaining constants 2 and e); this arbitrariness can be 
removed when intial data for some particular value of x is given. 

Upon inversion, the solution for f can be written as 
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2(2+k) ~ 
f(~) = (2 + k)~-+ 1 - 1 +cn  {(2+k)}a(1 - ~ ) } '  

where cn is the Jacobian Elliptic function with modulus {�89 �88 + k)-~}}; see Abramowitz 
and Stegun [11]. This reduces to the expression gained by Watson when # = 0 ;  there, Xo is the 
arbitrary constant. 

4. The Momentum Integral Approach 

Only the one exact solution to the equations (5), (6) can be found; therefore approximate 
methods are necessary for further progress. In this section we consider an approach analagous 
to the momentum integral of Karman where the particular profile is the quartic polynomial 
introduced by Polhausen (cf  Rosenhead I-4]). Integration of the momentum equation (6) 
with respect to y shows 

f " (uu~ + vu , )dy  = S~l - (uy)y = o . 
0 

The left-hand side can be simplified upon using (5) together with the conditions (7)-(9) for 

- u2dy  (17) (uy)y=o=S  Ux o " 

This is the required momentum integral. 
We now assume that, to a certain approximation, we can write u(x,  y) in the similarity 

representation (10). The boundary Conditions immediately show that f (0 )=  0,f(1)= 1,f '  (1)= 0. 
For the second derivatives o f f ( @  it is seen from (6) that (Uyy)y-O = -  S; therefore f " ( 0 ) =  
- S q 2 / U .  A similar calculation for the free surface shows f " ( 1 ) = - S q 2 / U +  U'q  z. Higher 
order derivatives can be found, though when a quartic polynomial is taken to approximatef  
these are sufficient. 

We write 
4 

= Z for 0=< 1, 
n - - O  

the coefficients a, from the five separate conditions given above, for 

f(~) = 2~ + ~3 + ~4 + ~-A~ (1 - ~)3,  ~f2~ (1 + 2~)(1 - ~)2 (18) 

where A = S ~ 2 / U  and O = S~12(U - U ' / ~ )  2. 

The quantities A and f2 are assumed to be sufficiently slowly varying functions of x in the 
usual manner. 

The functionf(~) is now substituted through (10) into the integrals (9) and (17) to give, after 
considerable simplification, the differential equations 

and 
?o UI~- ~ooS~]3-t-AUU' I~ 3 = 1 (19) 

1 5 2 0 - -  2 t~ 3 1 5 0 4 r r 2  2 34- 4 1 2 6 t 1 34  2 3 r 4- ~-~-  + ~ v ~ l  - 945-tJ rl +~a~SU~I - ~ w l S  ~t )~I +(56v+~-Uq-8~wsSr?  )St/ 

+ ~(2~o_~4U?l+~g?13_L141921?-2 .2 .~ ,~ .  +2~3U,8152 . 4 _ ~ _ ~ o 6 8  c , 2 . 6 \ .  } .  (20) 
a /  

These constitute a coupled pair of first order ordinary differential equations for U (x) and q (x) 
in terms of the known function S(x) .  

One of the basic phenomena of boundary layer theory is that of separation, and if this is to 
occur in the present context, then the point of separation will be where the drag on the bed of 
the stream is zero; that is, when (Uy)y = o = 0. In the present approximation, this occurs when 

A - f 2  = U'q 2 = - 12 (2!) 
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Separation is brought about when there is a sufficient retardation in the flow, and in this 
situation it is caused by a reduction in the gravitational forces due to the slope of the incline 
becoming increasingly horizontal. 

In conclusion, we note that when a cubic polynomial is taken instead of the quartic, the 
elevation t/(x) is given by a single first order differential equation in terms of S(x) ; however, this 
approximation does not include the possibility of separation. 

5. Numerical Solutions 

The differential equations (19), (20) have been integrated numerically for many different bed 
profiles S= S.(x), the solution quoted here are those that most typically represent the pheno- 

l9 

2,~- 

F i g u r e  1 .  G r a p h  o f  t/(x) w h e n  S (x) = �89 [1 - x (1 + x 2) 1}. 

T A B L E  1: S 2 ( x ) = � 8 9  + x 2 ) - 2 } .  

Apparent singularity between x = 0 .61568905 and x = 0.61568911.  

x U tl U'tl 2 Url Stl2/U 

- 5.0 0.6601 2.593 0.0718 1.712 7.049 
- 4.8 0.6623 2.584 0 .0760 1.711 7.051 
- 4.6 0.6647 2.574 0.0805 1.711 7.054 
- 4.4 0 .6672 2.564 0 .0854 1.711 7.057 
- 4.2 0.6699 2.554 0.0907 1.711 7.060 
- 4.0 0.6728 2.542 .0964 1.710 7.064 
- 3.8 0.6759 2.530 O. 1026 1.710 7.067 
- 3.6 0.6792 2.517 0.1093 1.710 7.071 
- 3.4 0.6828 2.504 0 .1166 1.710 7.076 
- 3.2 0.6866 2.489 0 .1244 1.709 7.080 
- 3.0 0.6908 2.474 0.1327 1.709 . 7.085 
- 2 . 8  0.6953 2.457 0.1415 1.708 7.091 

- 2.6 0 .7002 2.439 0.1505 1.708 7.096 
- 2.4 0.7054 2.421 0.1596 1.708 7.101 
- 2.2 0.7111 2.401 0.1681 1.707 7.106 
- 2.0 0.7171 2.380 0 .1752 1.707 7.111 
- 1.8 0 .7234 2.359 O. 1794 1.707 7.113 
- 1.6 0.7299 2.338 - 0 . 1 7 7 9  1.707 7.111 
- 1.4 0.7363 2.319 O. 1663 1.708 7.103 
- 1.2 0.7421 2.302 0 .1367 1.709 7.084 
- 1.0 0.7462 2.293 0.0758 1.711 7.045 
- 0.8 0.7471 2.296 - 0 .0384 1.715 6.972 

- 0.6 0.7423 2.323 - 0 .2415 1.724 6.844 
- 0.4 0.7279 2.390 - 0 .5867 1.740 6.63 
- 0.2 0.6999 2.522 - 1.145 1.765 6.293 

0.0 0.6555 2.757 - 1.999 1.807 5.797 
0.2 0.5958 3.146 - 3 . 2 5 3  1.874 5.112 
0.4 0 .5266 3.778 - 5 .090 1.990 4.207 
0.6 0 .4564 4.944 - 8.173 2 .256 3.150 
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mena. An example that shows the basic features when separation does not occur is given in 
Figure 1; here S (x )= �89  + x  2) 1}. At infinity the value of Uq is approximately 1.714, 
and the greatest variation from this value throughout the range of integration is about 5 %; 
similarly St/3_ ~ 12.017, with a maximum deviation of 14%. The smallest value of U'tl 2 is 
- 1.755, so that there is no suggestion of separation. Nevertheless, there is quite a rapid change 
in the depth of the liquid slightly upstream of the position of minimum slope, which is at x = 1 
with (S1)min: �88 

In the second example to be quoted, we take $2 (x) = �89 { 1 - 2 x  (1 + x 2 )  - 1}. It is found in this 
case that there is a breakdown in the numerical procedure at x_~0.616 due to an apparent 
singularity, the values calculated are given in Table 1. Because little difference is observed from 
the previous, well-behaved, case at the beginning of the numerical integration, the table just 
gives the results from the value x = - 5. Mathematically, the only means whereby the equations 
(19), (20) can develop a singularity is for A (x), the coefficient oft/' in (20), to become zero at some 
particular value of x. This behaviour is noted in the table; A (oe)_~ 4.066 and A decreases very 
rapidly as the singularity approaches with A(0.4)_~2.327 and A(0.6)-~0.514. The slope 
$2(0.616)-0.054. A very rough analysis of these equations also indicates that Uq must be 
greater x/5 for A to be zero, and this in turn certainly requires U'q 2 to be less than - 10 from 
(19). Consequently, it is not unreasonable to maintain that the singularity occurs at a point of 
separation where U'tl2 = -12 .  It has not been felt necessary to pursue these arguments more 
precisely, no other mechanism seems likely cause this separation and the correlation appears 
to be sufficiently demonstrated. The difference between the two cases so far presented seems to 
indicate that it is the reduction of the gravitational force due to the slope becoming increasingly 
separation to occur. 

As further evidence towards this conclusion, the slope S 3 ( x ) = 1 { 1 -  x/6 x(1 + 6x2) -1 } was 
investigated ; there is a more rapid change in the slope, but (S3)mi . is just �88 The range of values 
of Uq and U'q 2 are found to be only a little greater than those present with S 1, and no point of 
separation is indicated. 

When the bed has the form of a circle with radius a, the slope is given by S(x) = sin y -  (x/a) 
for constant 7. The numerical integration was carried through for a = 6 ,  a - -2  (starting at 
x = 0 for 7 = ~n). In each case the singularity occurs after a gradual decrease in the values of 
U' 02 towards - 12. When the circle has radius 6, the singularity occurs when the slope makes 
an angle 1 ~ 7' with the horizontal ; when the circle has radius 2, the critical slope is 2 ~ 45'. As 
could have been anticipated, separation occurs earlier when the slope is more rapidly changing, 
though the order of magnitude of the two slopes is equivalent. 

To check the accuracy of this approximate method, a numerical integration was completed 
for the exact solution given in section 3 ; we took $4 (x) = (x + 2)- 3. Once the adjustment to the 
initial data is complete, it is found that the variation in the quantity Uq is less than 0.1%, and 
in U'q 2 is about 1% when x is taken over the domain 0 _  x <  10. These variations are well 
within the limits that can be considered satisfactory. 

6. Analytical Approximations 

There is just one direction in which information has been found by analytical processes. When 
the slope of the incline is given by the infinite series 

S(x) = ~ a,x-" for some region - oo < x <  X1,  
n=0 

we can write the stream function ~ (defined by u = Oy, v = -~gx) in the form 

0 (x, y) = x - " .  
n=0 

In particular, tPo=ao(�89 3) from (4). The resultant free surface elevation is written as 
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tl(x) = ~ c,,x-" wigh c o = h .  
n = O  

To calculate the further functions ~b,,(y), we solve ~by~bxy-0x0yy=S+0yyy subject to the 
condit ions ~b = ~by = 0 on y = 0; 0 = constant,  ~byy = 0 on y = t/. The procedure  is straighforward, 
and the results for n = 1, 2 are found to be 

01(y )= �89  cl = -�89 o 

a2 y3 aoal (14h2yS_7hy6+yT)  ~b2(y ) = ~h (105a2_35a~/ao+4aoa~h4)y 2 - 6 -  2520 

a~h a2h 2alh s 
c2 - 9a ~ 3ao 105 

These representations do show the possibility of  a point  of separation, even to the first approxi-  
ma t ion ;  however,  the numerical  calculations indicate that  many  more  terms are required to 
give a true position with any accuracy. 
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